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Abstract
We extend to bianisotropic structures a formalism already developed, based
on the Bloch method for defining the effective dielectric tensor of anisotropic
crystals in the long-wavelength approximation. More precisely, we provide
a homogenization scheme which yields a wavevector-dependent effective
medium for any 3D, 2D, or 1D bianisotropic crystal. We illustrate our
procedure by applying this to a 1D magneto-electric smectic C∗-type structure.
The resulting equations confirm that the presence of dielectric and magnetic
susceptibilities in the periodic structures generates magneto-electric pseudo-
tensors for the effective medium. Their contribution to the optical activity of
structurally chiral media can be of the same order of magnitude as the one
present in dielectric helix-shaped crystals. Simple analytical expressions are
found for the most important optical properties of smectic C∗-type structures
which are simultaneously dielectric and magnetic.

1. Introduction

Natural and artificial complex and bianisotropic media have received a great deal of attention
during the last few decades. The reasons for this are their many potential applications and
a desire to gain a physical understanding of them. The structures studied theoretically and
experimentally in the applications are diverse. We can mention for instance chiral media
(Lindell et al 1994, Kharina et al 1998), multi-component composites, and artificial dielectrics
(Ziolkowski 1997). The peculiarities of various optical aspects of these media, such as the
propagation of waves, reflectance properties (Khaliullin and Tretyakov 1998, Semchenko
et al 1998), anomalous dispersion (Lakhtakia 1998), and biased absorption (Venugopal and
Lakhtakia 1998, 2000) of waves, have been widely treated. It should be mentioned that in
this paper we shall restrict our consideration to those bianisotropic media whose properties
vary over spatial scales much smaller (�10−8 m) than the wavelength of the electromagnetic
signals used to test them. In this sense, the use of an effective medium theory valid in the
long-wavelength limit and leading to a macroscopic description is feasible and useful.
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The fundamentals for supporting the macroscopic description in the quasistatic or long-
wavelength limit established long ago for dielectric materials (Born and Huang 1954) are
discussed for bianisotropic materials in the book of Lakhtakia et al (1989) and in the
controversial paper of Kamenetskii (1998a). There, it is stated that the separation between
the macroscopic and microscopic electromagnetic descriptions is not quite as sharp in these
media as it is in pure dielectrics due to the fact that Tellegen pseudo-tensors vanish in the long-
wavelength limit. In the literature, there are also dynamical microscopic models for studying
the phenomenon of electromagnetic activity in bianisotropic composites for the microwave
regime of frequency (Mackay et al 2000, Kamenetskii 1998b).

Some direct approaches have been developed to calculate the optical properties of
periodic media. However, the determination of such properties requires elaborate numerical
calculations. For this reason it is useful to develop homogeneous models approximating the
effective properties by means of simple and analytical expressions. The simplest approximation
is obtained by spatially averaging the inhomogeneous dielectric and magnetic tensors. This
approximation is very rough and does not allow one to account for any effect related to the
wavevector dispersion. A better approximation consists in dividing the periodic sample into
many homogeneous layers (the thin-plate approximation given by Reese and Lakhtakia (1990)
each one providing a transfer matrix. The homogeneouseffective transfer matrix is obtained by
averaging over all these matrices. The effective dielectric tensor calculated by such a procedure
yields a better approximation but still does not account for the spatial dispersion (Becchi et al
1999).

By using the Tellegen constitutive relations, we generalize to bianisotropic media a
previously developed theory valid only for dielectric materials (Galatola 1997, Ponti et al
2001) where the Landau constitutive relations were used. The theory is based on the Bloch
wave method which is suitable for exactly describing the wave propagation in periodic media.
Our procedure can be used to optically define a homogeneous model, by means of effective
material tensors, which globally take into account the non-locality and the multiple scattering
of the electromagnetic interaction caused by the periodic inhomogeneities of the medium. This
allows us to provide a homogenization scheme which yields a wavevector-dependent effective
medium for any 3D, 2D, or 1D periodic structure, in the long-wavelength approximation. The
wavevector dispersion of the effective medium is originated by the multiple scattering of the
electromagnetic field in the whole crystal.

The outline of this work is as follows. In section 2 the general formalism is derived from
the Tellegen constitutive relations for perfectly periodic media—that is to say, crystals without
defects and for which the thermal fluctuations of the lattices can be neglected. In section 3 we
illustrate our formalism by giving the exact analytical expression up to two-photon scattering
events for the effective material tensor of a medium periodic in only one direction, having the
typical helical structure of chiral smectic C∗ liquid crystals but with non-vanishing magnetic
polarizability. In section 4 we use the effective material tensor previously obtained to calculate
the plane-wave solutions for the Maxwell equations and derive the expression for the optical
activity of the effective medium. Finally, in section 5 we summarize and discuss our results.

2. Basic equations

Maxwell’s equations can be written for monochromatic fields in matrix form as

R �ψ = i
ω

c
M �φ, (1)
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where R is

R =
(

rot 0
0 rot

)
, (2)

rot =
( 0 −∂3 ∂2

∂3 0 ∂1

−∂2 −∂1 0

)
, (3)

where 1, 2, and 3 are the Cartesian coordinates. The vectors �ψ and �φ are defined as

�ψ ≡
(

�
1/2
0 �e

�
−1/2
0

�h
)

, �φ ≡
(

�
1/2
0 ε−1

0
�d

�
−1/2
0 µ−1

0
�b
)

, (4)

where �0 ≡ √
µ0/ε0 is the vacuum impedance, �e, �h, �d , and �b are dimensionless

electromagnetic fields, and M is an interchange 6 × 6 tensor defined by

M ≡
(

0 I
−I 0

)
, (5)

where I is the 3 × 3 identity tensor. For linear media, the most general constitutive relations are
those of Tellegen (1948) corresponding to bianisotropic media which in the frequency domain
can be written as

�φ = γ �ψ, γ(�r) ≡
(

ε(�r) χ(�r)

ζ(�r) µ(�r)

)
, (6)

where ε and µ are the relative electric permittivity and magnetic permeability tensors,
respectively. Since χ and ζ relate polar and axial vectors, these quantities are just dimensionless
pseudo-tensors accounting for the fact that in such media the electric field can additionally
induce a magnetic polarization and the magnetic field may generate electric polarization. For
lossless media, the material tensor γ is Hermitian (Kong 1986).

Now, we generalize the Bloch wave method developed in the paper of Galatola (1997), to
define the homogeneous model for bianisotropic media. According to this procedure, the tensor
γ defining the material properties of the system, which for a crystal satisfies the periodicity
condition γ(�r + �p) = γ(�r), is expanded in a Fourier series as

γ(�r) =
∑

�q
γ(�q) exp[ik0 �q · �r ], (7)

where k0 �q are the lattice vectors of the reciprocal space. The electromagnetic field can be
written in terms of normal modes defined as

�ψ(�r) =
∑

�q
�ψ(�q) exp[ik0(�n + �q) · �r ], (8)

where k0�n is the Bloch vector and �ψ(�q) are the Fourier amplitudes of the Bloch waves. Inserting
equations (7) and (8) in equation (6), we find

�φ(�q) =
∑
�qa

γ(�q − �qa) �ψ(�qa) (9)

and

S �ψ(�q) =
∑
�qa

Mγ(�q − �qa) �ψ(�qa), (10)

where S is the tensor defined as

S =
(

α 0
0 α

)
(11)
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and α is the antisymmetric tensor given by

α =
( 0 −(�n + �q)3 (�n + �q)2

(�n + �q)3 0 −(�n + �q)1

−(�n + �q)2 (�n + �q)1 0

)
. (12)

Here also the subscripts 1, 2, 3 correspond to the Cartesian coordinates of the vector �n + �q. By
separating the terms �qa = �q and �0 in equation (10), and solving for �ψ(�q), we obtain

�ψ(�q) = G(�q)γ(�q) �ψ(�0) + G(�q)
∑

�qa �=�q,�0
γ(�q − �qa) �ψ(�qa) (13)

where

G(�q) = −
(

ε(�0) χ(�0) − α(�q)

α(�q) + ζ(�0) µ(�0)

)−1

. (14)

The effective macroscopic model is implicitly defined by the long-wavelength component of
the Bloch wave (Born and Huang 1954). According to the first of equations (6), the effective
material tensor γ̃ is therefore defined by the relation �φ(�0) = γ̃ �ψ(�0). Thus, taking into account
equation (9), one obtains

γ̃ �ψ(�0) ≡
∑

�q
γ(−�q) �ψ(�q). (15)

Up to zero order, γ̃ is defined by setting �q = �0 in equation (15) and is given by the zeroth-order
Fourier component of γ(�r), which coincides with its spatial average γ̄.

The first-order approximation is obtained by taking into account the components �q �= 0
through equation (13), where the terms of the sum over �qa are neglected. It yields

γ̃ = γ̄ +
∑
�q �=0

γ(−�q)G(�q)γ(�q), (16)

which only accounts for two-photon scattering events.
The next iteration is obtained by keeping the summation over �qa in equation (13) and

approximating �ψ(�qa) by G(�qa)γ(�qa) �ψ(�0). The tensor γ̃ turns out to be

γ̃ = γ̄ +
∑
�q �=0

γ(−�q)G(�q)γ(�q) +
∑
�q �=0

∑
�qa �=�q,�0

γ(−�q)G(�q)γ(�q − �qa)G(�qa)γ(−�qa). (17)

Iteration of this procedure gives

γ̃ = γ̄ +
∞∑

N=2

∑
�q1,...,�qN−1

γ(�q1)G(−�q1)γ(�q2)G(−�q1 − �q2)γ(�q3)

× · · · × G(−�q1 − �q2 − �qN−1)γ(�qN ), (18)

where N defines the multiplicity of the scattering, �q1 �= �0, . . . , �qN−1 �= �0, and

�q1 + �q2 �= �0, . . . , �q1 + �q2 + · · · + �qN−1 �= �0,

�q1 + �q2 + · · · + �qN = �0.
(19)

The latter relation states that only the forward scattering contributes to γ̃.
For most periodic structures the two-photon approximation given by equation (16) is good

enough for any practical purpose. The role of the multiple scattering is discussed in the paper
by Ponti et al (2001). As shown by equations (12) and (14), the effective tensor γ̃ depends
strongly on the wavevector k0�n of the plane waves propagating in the effective homogeneous
medium (wavevector dispersion).

Before closing this section it is important to stress that our formalism is useful for modelling
any 3D, 2D, or 1D periodic structure, as was done in the work by Ponti et al (2001) for periodic
dielectric structures. Next, to illustrate our formalism, we will analyse a 1D dielectric–magnetic
periodic medium with the typical chiral structure of smectic C∗ (de Gennes and Prost 1994).
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3. Magnetic and dielectric media

Let us consider an anisotropic medium (χ = ζ = 0), whose magnetic and dielectric tensors
ε(�r) and µ(�r) are periodic along the x3-axis, and such that their space averages ε̄ and µ̄ show
uniaxial symmetry:

ε̄ =
(

ε⊥ 0 0
0 ε⊥ 0
0 0 ε‖

)
, (20)

µ̄ =
(

µ⊥ 0 0
0 µ⊥ 0
0 0 µ‖

)
. (21)

The dimensionless Bloch vector �n = �k/k0 can be chosen without loss of generality as
(n1, 0, n3). The exact expression for G at any order in �n and �q = (0, 0, q) is

G = −
(

Gee Gem

Gme Gmm

)
(22)

where

Gee =



ε‖µ⊥−n2
1

g1
0 −n1(n3+q)

g1

0 µ‖µ⊥
g2

0

− n1(n3+q)

g1
0 ε⊥µ⊥−(n3+q)2

g1


 , (23)

Gem =

 0 ε‖(n3+q)

g1
0

−µ‖(n3+q)

g2
0 µ⊥n1

g2

0 − ε⊥n1
g1

0


 , (24)

Gmm =



ε⊥µ‖−n2
1

g2
0 − n1(n3+q)

g2

0 ε‖ε⊥
g1

0

− n1(n3+q)

g2
0 ε⊥µ⊥−(n3+q)2

g2


 , (25)

Gme is the transpose of Gem , and

g1 ≡ ε‖ε⊥µ⊥ − ε⊥n2
1 − ε‖(n3 + q)2,

g2 ≡ µ‖µ⊥ε⊥ − µ⊥n2
1 − µ‖(n3 + q)2.

(26)

Notice that Gmm can be obtained from Gee by swapping εi with µi where i = ⊥, ‖. Even
though the medium considered has vanishing magneto-electric tensors (i.e. χ = ζ = 0), the
tensor G contains non-zero elements which might couple the magnetic and electric fields, since
the 3 × 3 subtensors Gem and Gme are non-vanishing. The elements Gi j of the tensor G vanish
if the indices i and j have different parity (for instance when i is even and j is odd). The
others are fractions with denominators g1 and g2 for odd or even indices, respectively. These
last quantities depend quadratically on the parameter q = λ/p, where p is the period of the
medium and λ is the light wavelength. In the limit λ → ∞ (static fields) the matrices Gem and
Gme go to zero. We should mention that this result is in agreement with some of the discussion
addressed by Lakhtakia et al (1989) and Kamenetskii (1998a).

We analyse now the simple case of a periodic medium having the same structure as a chiral
smectic C∗ liquid crystal. The local dielectric and magnetic tensors rotate along z in such a
way that their principal axes 2 and 3 maintain constant angles π/2 − θ and θ , respectively,
with z, where θ is the tilt angle of the smectic structure.

The dielectric and magnetic tensors of the periodic medium are

ε(z) = ε + ε−1 exp(−ik0qz) + ε1 exp(ik0qz) + ε−2 exp(−i 2k0qz) + ε2 exp(i 2k0qz),

µ(z) = µ + µ−1 exp(−ik0qz) + µ1 exp(ik0qz) + µ−2 exp(−i 2k0qz) + µ2 exp(i 2k0qz).
(27)
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The tensors ε, ε±1, ε±2 are given by equation (20) and by

ε±1 = ε23

2

( 0 0 ±i
0 0 1
±i 1 0

)
, (28)

ε±2 = ε1 − ε22

4

( 1 ∓i 0
∓i −1 0
0 0 0

)
, (29)

respectively, where

ε⊥ = (ε1 + ε22)/2,

ε‖ = ε2 sin2 θ + ε3 cos2 θ,

ε22 = ε2 cos2 θ + ε3 sin2 θ,

ε23 = 1
2 (ε2 − ε3) sin 2θ.

(30)

Here ε1, ε2, ε3 are the principal values of the rotating tensor ε. The tensors µ, µ±1, and µ±2
are similarly defined, with µi j instead of εi j .

In the two-photon scattering approximation and at any order in the small parameter
q−1 ≡ p/λ, the four tensors appearing in the defining equation

γ̃ =
(

ε̃ χ̃

ζ̃ µ̃

)
, (31)

are given by

ε̃ = ε −

 ε′

11 −iε′
12 0

iε′
12 ε′

11 iε′
23

0 −iε′
23 ε′

33


 , (32)

where

ε′
11 = 1

2

[
ε2

23

ε33
− (ε1 − ε22)

2(µ1 + µ22)

16q2 − (ε1 + ε22)(µ1 + µ22)

]
, (33)

ε′
33 = − 2ε2

23(µ1 + µ22)

4q2 − (ε1 + ε22)(µ1 + µ22)
, (34)

ε′
12 = 8n3q(ε1 − ε22)

2(µ1 + µ22)

(16q2 − (ε1 + ε22)(µ1 + µ22))2
, (35)

ε′
23 = 2n1qε23

2

ε33(4q2 − (ε1 + ε22)(µ1 + µ22))
; (36)

the tensor µ̃ is obtained from ε̃ by exchanging εi j with µi j ; the pseudo-tensors are

ζ̃
† = χ̃ = −

( iχ ′
11 −χ ′

12 0
χ ′

12 iχ ′
11 −χ ′

23
0 χ ′

32 iχ ′
33

)
, (37)

where the superscript † means complex conjugation and transposition and

χ ′
12 = n3(ε1 − ε22)(µ1 − µ22)(16q2 + (ε1 + ε22)(µ1 + µ22))

(−16q2 + (ε1 + ε22)(µ1 + µ22))2
, (38)

χ ′
23 = n1ε23(ε1 + ε22)µ23

ε33(−4q2 + (ε1 + ε22)(µ1 + µ22))
, (39)

χ ′
32 = n1ε23(µ1 + µ22)µ23

µ33(−4q2 + (ε1 + ε22)(µ1 + µ22))
, (40)
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χ ′
11 = 2q(ε1 − ε22)(µ1 − µ22)

16q2 − (ε1 + ε22)(µ1 + µ22)
, (41)

χ ′
33 = 4qε23µ23

4q2 − (ε1 + ε22)(µ1 + µ22)
. (42)

One may note that γ is Hermitian if ε(�r) and µ̄(�r) are real. It is worth mentioning that the
above expressions have been obtained up to first order in �n, and are valid at any order in the
parameter q−1 ≡ p/λ.

4. Plane-wave solutions and optical activity

Since the most interesting optical property of chiral media is their optical activity, in what
follows we derive the contributions associated with ε̃, µ̃, ζ̃, and χ̃ by considering the cases
of wave propagation parallel and orthogonal to the helix axis. The integration of Maxwell’s
equations is not an easy problem since the material tensor γ̃ depends on the wavevector �k = k0�n.
They give an infinite number of plane-wave solutions for any direction of �k, but in our case
only four waves are physically meaningful. To find such solutions we expand γ̃ given by
equation (31) in power series in the small parameter q−1 ≡ p/λ.

For a wave propagating along the x1-axis and at first order in p/λ we have

ε̃ =
(

ε̃⊥ 0 0
0 ε̃⊥ 0
0 0 ε‖

)
+ i

p

λ

ε2
23n1

2ε33

( 0 0 0
0 0 −1
0 1 0

)
, (43)

ζ̃
† = χ̃ = −i

p

λ




(ε1−ε22)(µ1−µ22)

8 0 0

0 (ε1−ε22)(µ1−µ22)

8 0
0 0 ε23µ23


 , (44)

ε̃⊥ = ε⊥ − ε2
23

2ε‖
. (45)

The tensor µ̃ is obtained from ε̃ by exchanging εi j with µi j . In order to find the plane-
wave solutions from Maxwell’s equations, we consider the elements of γ̃ depending on p/λ as
perturbing terms. At zero order, the wavevector is �k = k0n0 x̂1 where n0 satisfies the biquadratic
equation

n4
0 − n2

0(ε̃⊥µ̃‖ + ε̃‖µ̃⊥) + ε̃‖ε̃⊥µ̃‖µ̃⊥ = 0, (46)

whose solutions are

n⊥
0 =

√
ε̃⊥µ̃‖ and n‖

0 =
√

ε̃‖µ̃⊥. (47)

The waves are linearly polarized. The superscripts ⊥ and ‖ refer to the direction of the electric
field with respect to the plane (�k, x̂3).

Each one of the first-order solutions is found by the following iteration procedure. The
expression for n0 given by equation (47) is inserted into the expression for γ̃ to obtain a new
value of n. The iteration of this procedure converges rapidly for small values of p/λ. The
plane waves obtained are in general elliptically polarized.

To show explicitly the presence of the optical rotation, it is convenient to consider the case
where the unperturbed solutions are degenerate, i.e. n⊥

0 = n‖
0. The first-order solutions are

circularly polarized, and the circular birefringence �n = nle f t − nright is

�n = p

λ

[
ε2

23

2ε33

√
µ̃‖µ̃⊥ +

µ2
23

2µ33

√
ε̃‖ε̃⊥ + ρε23µ23 + (ε1 − ε22)

(µ1 − µ22)

8ρ

]
, (48)
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where ρ = (µ̃⊥ε̃⊥/µ̃‖ε̃‖)1/4. The first term represents the well known contribution to the
rotatory power given by the tensors ε̃ for µ̃⊥ = µ̃‖ = 1 (Hubert et al 1998, Etxebarria and
Folcia 2001, Oldano and Rajteri 1997). The second term is new, has the same form as the
latter one, and is related to µ, as expected. Finally, the third and fourth terms represent the
rotatory power coming from the magneto-electric pseudo-tensors χ̃ and ζ̃. The presence of
such terms was not obvious a priori.

Let us now consider a wave propagation along the x3-axis (parallel propagation). Up to
the third order in p/λ the equations (18) and (38) give

ε̃ =
(

ε̃⊥ 0 0
0 ε̃⊥ 0
0 0 ε‖

)
+ i

(
p

λ

)3
(ε1 − ε22)

2(µ1 + µ22)n3

32

( 0 1 0
−1 0 0
0 0 0

)
, (49)

ζ̃
† = χ̃ = −i

p

λ




(ε1−ε22)(µ1−µ22)

8 0 0

0 (ε1−ε22)(µ1−µ22)

8 0
0 0 ε23µ23




+

(
p

λ

)2
(ε1 − ε22)(µ1 − µ22)n3

16

( 0 1 0
−1 0 0
0 0 0

)

− i

(
p

λ

)3




(ε2
1−ε2

22)(µ
2
1−µ2

22)

128 0 0

0 (ε2
1−ε2

22)(µ
2
1−µ2

22)

128 0

0 0 ε23µ23(ε1+ε22)(µ1+µ22)

4


 . (50)

As before, the tensor µ̃ is obtained from ε̃ by switching εi j and µi j .
At zero order of the perturbative approach, the wavevector is �k = k0n0 x̂3, where

n0 = ±√
ε⊥µ⊥. (51)

The two solutions for the forward (and for the backward) propagating modes are coincident, as
expected for parallel propagation in uniaxial media. As before, the contribution to the optical
activity is given by terms depending on p/λ. The term linear in p/λ is different from zero and
is given by

�n = 1

4

p

λ
(ε1 − ε22)(µ1 − µ22). (52)

This result is new and unexpected. In fact, it has been shown in the paper written by Ponti et al
(2001) that such terms are absent for light propagating along the periodicity direction of any
1D dielectric crystal, whose optical activity scales as (p/λ)3.

The next contribution comes from the term related to (p/λ)3 and reads

�n = 1

32

(
p

λ

)3[
(ε1 − ε22)

2(µ1 + µ22)µ⊥ +
1

2
(ε2

1 − ε2
22)(µ

2
1 − µ2

22)

]
. (53)

For non-magnetic media, it reduces to the already known contribution (Ponti et al2001) coming
from the dielectric anisotropy (Becchi et al 1999).

We finally observe that Maxwell’s equations admit exact solutions for axial propagation in
the helical media considered here, as shown by de Vries (1951) for cholesteric liquid crystals,
by Lakhtakia and Weiglhofer (1994, 1995a, 1995b, 1999) for media simultaneously dielectric
and magnetic, and by Lakhtakia and Weiglhofer (2000) for the general case of bianisotropic
media. Equations (52) and (53) are in agreement with the exact solutions. The results given
in this section, valid in the long-wavelength limit, allow us to find analytical but approximate
solutions for any light direction in cholesteric-like and smectic-like structures.
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5. Summary and concluding remarks

We generalized to bianisotropic materials the theory based on the Bloch wave method
developed in the works by Galatola (1997) and Ponti et al (2001) for crystals optically defined
by a local permittivity tensor ε(�r).

We provided exact expressions for the tensors ε̃, µ̃, χ̃, and ζ̃ defining the effective medium
and appearing in the Tellegen constitutive relations. These effective tensors are expressed as
the sums of space averages of ε(�r), µ(�r), χ(�r), and ζ(�r), and of terms taking into account
the multiple scattering due to the inhomogeneities of the periodic structure on a mesoscopic
scale. Such terms depend explicitly on the wavevector �k of the plane waves propagating in the
effective medium, that as a consequence exhibits a strong wavevector dispersion. The multiple
scattering involves all the Fourier components of the functions ε(�r), µ(�r), χ(�r), and ζ(�r), in
such a way as to give a contribution to any one of the four effective tensors even when two of
the quantities ε(�r), µ(�r), χ(�r), and ζ(�r) are zero. If χ(�r) ≡ ζ(�r) ≡ 0, the dominant terms
appearing in the expressions for χ̃ and ζ̃ scale as the ratio of the structure period and the light
wavelength, p/λ. Such terms tend to zero in the limit λ → ∞ (static fields) as argued by
Lakhtakia et al (1989) and Kamenetskii (1998b).

The equations obtained have been applied to periodic media having the typical structure
of cholesteric and chiral smectic C∗ liquid crystals, which are made of molecules whose long
axis rotates uniformly along a given direction (the helix axis of the periodic structure). Such
crystals, when they are purely dielectric media, have been the object of intensive research
because of their huge optical activity, so their optical properties are well known. We showed
that the simultaneous presence of dielectric and magnetic susceptibilities gives an additional
contribution to the optical activity. More precisely, we showed that the circular birefringence
for light propagating along the helix axis, which for p/λ  1 is practically absent in purely
dielectric media, acquires a term scaling as p/λ and proportional to the product of the magnetic
and dielectric anisotropies. In the other directions, four terms appear in the expression for the
circular birefringence. One of those terms is the magnetic equivalent of the well known term
associated with the dielectric anisotropy. The other two are related to the presence of the
magneto-electric pseudo-tensors. All these terms are of the same order of magnitude, scale as
p/λ, and are proportional to the dielectric and magnetic anisotropies.

For oblique propagation the circular birefringence has small macroscopic effects in purely
dielectric media because of the presence of a strong linear birefringence. In the presence of
magnetization the linear birefringence can be absent, a fact that gives a new interest to such
helical structures.

Finally, we address the following observations. Many sets of bulk and boundary material
equations are found in the literature for media displaying wavevector dispersion (Lakhtakia and
Weiglhofer 1994). The theory developed in section 3, in which the macroscopic properties
are derived from a mesoscopic model defined by the periodic functions ε(�r) and µ(�r), is
particularly suitable for discerning the limits of validity of different approaches. Indeed,
the optical properties of a periodic medium can be easily calculated by simple numerical
analysis and used as a test for our equations defining the macroscopic model. In this sense the
results given here can be considered as a first and very partial step towards a more complete
analysis. In fact, we have studied only the bulk properties of perfect crystals, corresponding to
homogeneous and unlimited effective media, whereas important discrepancies in the different
macroscopic equations are expected at the boundaries of bounded media.

In our approach all the terms appearing in the Tellegen equations contain terms depending
on p/λ. Particular emphasis was given to the linear terms which are related to the optical
activity of the medium. The formulation of Born and Wolf (1999) and Landau and Lifshitz
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(1985) emphasizes the non-locality of this property because it is given by terms explicitly
containing the wavevector �k and coming from the polarization induced by the space derivatives
∂ E j/∂xi . In contrast, the optical activity appears, at least formally, in the Tellegen formulation
as a local property, in spite of the fact that for homogeneous media the two formulations are
equivalent (Peterson 1975). In our approach the optical activity is given by terms contained in
ε̃ and µ̃, depending explicitly on �k, and by terms contained in χ̃ and ζ̃ which are independent of
�k. The contributions of all these terms to the optical activity exhibit the same linear dependence
on p/λ and are of the same order of magnitude, a fact that is in agreement with the analysis
given by Peterson (1975).
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